12.08.2023

Четыре фактора как деревья очищают воздух. Растения в условиях города


Загрязнение атмосферы - одна из самых распространенных и наиболее сложных форм воздействия городов на окружающую среду.

Воздух в городе загрязняется твердыми частицами, пылью, сажей, золой, аэрозолями, газами, парами, дымом, цветочной пыльцой и т. д. Смешение загрязнителей серьезно затрудняет оценку воздействия каждого отдельно взятого компонента, которые, вступая во взаимодействие, увеличивают отрицательные последствия.

К основным источникам, загрязняющим атмосферу, относятся промышленные предприятия, топливно-энергетические предприятия, транспорт.

От загрязненного воздуха страдает человек и все, что его окружает: растительность, животный мир, архитектурные памятники, металл, строительные материалы, ткани и т. д.

В настоящее время состав сухого воздуха в атмосфере определяется следующим соотношением газов:

Азот N2.......... 78,09

Кислород O2.......... 20,95

Аргон A2.......... 0,93

Углекислый газ CO2.......... 0,03

Неон Ne.......... 1,82-10~3

Гелий He.......... 5,24-10~4

Криптон Kr.......... 1,14-10~4

Водород H2.......... 5,00 -10~5

Ксенон Xe.......... 8,70-10~6

Увеличению содержания СО2 в атмосфере Земли в значительной мере способствует непродуманное сведение на огромных территориях лесов, которые служили важнейшими поглотителями СО2 и источниками кислорода.

Многие ученые считают, что величина и сила антропогенного воздействия на климат прежде всего зависят от выделения углекислоты в процессе сжигания топлива, преобразования планетарного круговорота этого газа и повышения его концентрации в атмосфере, что вызывает «парниковый эффект» - ухудшение прозрачности воздуха для теплового излучения земли и как следствие - повышение температуры атмосферного воздуха. Повышая температуру земной поверхности и прилегающего воздушного слоя, рост содержания СО2 нарушает энергетический баланс атмосферы. Моделирование этих процессов показывает, что к началу следующего века реально достигнутая концентрация СО2 в состоянии повысить среднюю поверхностную температуру Земли на 1 °С. Сохранение современных темпов роста производства энергии за счет сжигания ископаемого горючего ведет к росту концентрации СО2 и как следствие - к изменению земного климата.

Кроме упомянутых выше газов в воздухе всегда находятся различные примеси, как газообразные, так и твердые, жидкие (метан CH4, окись углерода CO, сернистый газ SO2, закись азота N2O, озон O3, двуокись азота NO2, Rr, окись азота NO, водяной пар). Их содержание в разных точках земного шара неодинаково и непостоянно.

В результате деятельности человека в воздух выбрасывается окись серы. В недалеком прошлом она попадала в воздух вместе с дымом, сейчас ее поставляют и другие источники. Основными источниками являются выбросы электростанций и промышленных предприятий, работающие на угле и нефтетопливе с высоким содержанием серы, производства металлов из сернистых руд. Немалое значение имеют бытовые источники.

Каждая тонна угля с 3 %-ным содержанием серы при сжигании выделяет в атмосферу около 60 кг сернистого ангидрида. Крупная тепловая электростанция ежедневно выбрасывает в воздух сотни тонн сернистых соединений. Из окисей образуется двуокись серы SО2, другая часть подвергается дальнейшему окислению в процессе сгорания, превращается в сернистый ангидрид (трехокись серы SO3), небольшое количество серы остается в золе. Сернистый ангидрид, растворяясь в воде, образует серную кислоту H2SO4.

Двуокись серы, попав в воздух, может окислиться и превратиться в серную кислоту, а затем, вступая в реакции с другими загрязнителями,- в сульфаты. Соединения серы в виде газов, частиц или дымки воздействуют на дыхательные пути, кожу и глаза человека при содержании их в воздухе в количестве 100 мг/м3. Самые мельчайшие частицы проникают в легкие.

Выбросы серы в атмосферу постоянно и быстро растут, и именно окислы серы на 70-80 % определяют кислотность дождей. Величина выпадения серы на территорию страны достигает 15 млн. т в год.

Поэтому наибольший эффект по предотвращению закисления среды достигается только сокращением выбросов за счет предварительного удаления серы из топлива или создания эффективных устройств по очистке дымовых газов.

Возникновение новых еще более пагубных последствий связано с появлением на ТЭЦ и промышленных предприятиях труб большой высоты (300-400 м), позволивших снизить загрязнение приземного слоя атмосферы вокруг предприятия, но не уменьшающих количество выбросов, а только рассеивающих их на огромных территориях. Так, в Швеции и Норвегии только 20-25 % закисления среды собственного происхождения, остальное переносится из других стран. Если закисление будет продолжаться в том же темпе, через 10 лет около 1000 озер останется без рыбы, резко упадет урожайность.

Увеличившееся рассеивание элементов повлекло за собой возрастание в окружающей среде концентрации тяжелых металлов. Наибольшую опасность как для природы, так и для человека представляют ртуть, свинец, кадмий, мышьяк, ванадий, олово, цинк, сурьма, медь, молибден, кобальт, никель. Свинец в атмосферу попадает в основном из выхлопных газов двигателей внутреннего сгорания.

Тяжелые металлы, попадая с воздухом, водой, растительной и животной пищей непосредственно в организм человека, накапливается в печени, почках, оказывают неблагоприятные воздействия на ткани костей.

В теплое время года в воздухе городов наиболее развитых стран средний уровень содержания свинца в зависимости от конкретных условий меняется от 2 до 8 мкг (иногда несколько больше) на 1 м3 воздуха. Зимой же концентрация свинца резко возрастает. Следует иметь в виду, что наличие даже 3 мкг свинца в 1 м3 воздуха приводит к содержанию 30 мкг его на 100 мл крови человека.

Загрязняют атмосферу и самолеты, особенно сверхзвуковые, разрушая слой озона.

Помимо углекислого газа и серы в атмосферу от автомобилей, ТЭЦ, промышленных предприятий, от удобрений сельскохозяйственных угодий поступает большое количество азота. В процессе горения из азотистых компонентов некоторых материалов или в результате связывания атмосферного азота образуются газообразные загрязнители воздуха - окись азота и двуокись азота. Окись азота превращается (медленно, при большом разбавлении) в двуокись азота. Окиси азота образуются при контакте азота и кислорода с горячей поверхностью в результате любого процесса горения (двигатели внутреннего сгорания, ТЭЦ, бытовой газ и т. д.); они образуются при извержении вулканов или молниях. Исследования показали, что источники различной высоты, плотности размещения и объема выбросов не пропорционально влияют на загрязнение воздуха в приземном слое. Если на долю энергетики приходится около 60 % выбросов окислов азота, то вклад их в загрязнение воздуха не превышает 20 %. Хотя выбросы от автотранспорта значительно меньше, однако они являются поставщиком около 70 % загрязнителей. Поэтому в расчетах по оценке концентраций вредных веществ в воздухе учитываются все источники выбросов независимо от их параметров и объемов выбросов.

Существенное значение имеет запыленность атмосферы, особенно в энергетическом балансе биосферы, так как пыль рассеивает и поглощает солнечную радиацию. По подсчетам, поступление пылевидных частиц в атмосферу Земли составляет (млн. т в год): от индустриальных процессов- 45, энергетических и отопительных процессов - 36, других видов хозяйственной деятельности - 30, ветровой эрозии почв - 500, лесных пожаров - 135, извержения вулканов - 250, от испарения морской воды - 1000 и космическая пыль - 10.

Мероприятия по охране атмосферного воздуха должны осуществляться на основе широко поставленных научно-исследовательских работ, посвященных изучению количественной концентрации загрязнений, попадающих в атмосферу, и дальности их распространения. Установлено, что из общего количества загрязнений 27 % поступает от электростанций, 24,3 % - от предприятий черной металлургии, 10,5 % - от цветной, 15,5 % - от нефтедобычи и нефтехимии, 13,1 % - от транспорта, 8,5 % - от промышленности стройматериалов и 1,5 % - из прочих источников.

В советское государственное санитарное законодательство в настоящее время лишь в области охраны окружающей среды включены нормативы на предельно допустимые концентрации (ПДК) для 804 химических веществ в воде водоемов, 446 химических веществ и 33 их комбинации в атмосферном воздухе, 28 химических веществ - загрязнителей почвы.

С 1 января 1980 г. в СССР действует государственный стандарт, определяющий правила установления предельно допустимых выбросов (ПДВ) загрязняющих веществ в атмосферу. Организация системы контроля загрязнения атмосферы способствует сохранению в чистоте важнейшего компонента окружающей среды - воздуха.

Контроль уровней загрязнения атмосферы проводится более чем в 500 городах и промышленных центрах, причем в 122 городах ведется оперативное прогнозирование возможных высоких уровней загрязнения воздуха в связи с ожидаемыми неблагоприятными метеорологическими условиями. При получении такого прогноза на предприятиях, имеющих источники выбросов в атмосферу, должны вводиться в действие заранее разработанные программы уменьшения выбросов (переход на более чистое топливо или сырье, ввод резервных очистных сооружений, усиление контроля за работой оборудования и т. д.).

За последние несколько лет в Москве введено в строй более 2 тыс. установок, фильтрующих выбросы в атмосферу, мощностью 20 млн. м3/ч. Более 300 предприятий, загрязняющих воздух, были выведены из города или реконструированы и количество выбросов уменьшилось. Большую роль сыграла газификация промышленности и быта в столице. Однако этих мер явно недостаточно.

В 1988 г. наибольшее среднемесячное содержание кадмия наблюдалось в Одессе - 3 ПДК; никеля - в Нижнем Новгороде; Лениногорске - 3 ПДК; свинца - в Балхаше и Чимкенте - 9-13 ПДК, а в Комсомольске-на-Амуре -15 ПДК. Наибольшая среднемесячная концентрация марганца в г. Рустави составляет 42 ПДК. Число городов, в атмосфере которых в отдельные дни отмечались высокие уровни загрязнений (более 10 ПДК), было достаточно стабильно и составило в 1988 г. 103 города.

В 1988 г. в 16 городах страны отмечались концентрации вредных веществ в воздухе, превышающие 50 ПДК, при этом в Архангельске, Байкальске, Волжском случаи экстремального высокого загрязнения отмечались неоднократно, что свидетельствует о хроническом характере причин значительных выбросов вредных веществ в этих местах. Наиболее высокий уровень загрязнения атмосферы и повышенной заболеваемости населения в 1988 г. наблюдался в 68 городах страны. В этот перечень входят Алма-Ата, Душанбе, Ереван, Киев, Фрунзе, юго-восточная окраина Москвы, а также города с населением свыше 1 млн. человек: Днепропетровск, Донецк, Самара, Новосибирск, Одесса, Омск, Пермь, Свердловск, Челябинск.

Энергетической программой СССР предусматривается в период до 2000 г. модернизировать, в основном на электростанциях европейской части страны, существующее оборудование общей мощностью до 100-140 млн. кВт. Эти меры, а также намеченное совершенствование структуры энергетического баланса, замещение органического топлива другими энергоносителями, мероприятия по повышению экономичности энергетического оборудования позволят в итоге предотвратить выбросы двуокиси серы в объеме около 10 млн. т в год.

Среди мер, направленных на сокращение выбросов от автотранспорта в атмосферу, следует отметить дизелизацию автомобильного транспорта, увеличение выпуска автомобилей, работающих на сжатом и сжиженном природном газе, а также бензометанольных смесях, и значительное увеличение выпуска неэтилированных автомобильных бензинов и катализаторов. Эта проблема носит комплексный характер, так как включает меры по регулированию режимов транспортного движения, совершенствованию развития автотранспортных магистралей.

Факты свидетельствуют о явной недооценке роли и возможности растений в охране окружающей природной среды.

Листья способны выполнять важную санитарно-гигиеническую роль, поглощая токсические газы, накапливая вредные вещества в покровных, а затем и внутренних тканях. Часть токсических веществ оттекает из листа и локализуется в побегах, растущих листьях, плодах, клубнях, луковицах, корнях. Количество фторидов, хлоридов, окислов серы, аккумулирующихся во всех органах растений, в сумме составляет не более 20 % их содержания в листьях.

Древесная растительность может выполнять эти функции только при ус¬ловии, что "концентрация аэрозолей, особенно в жидкой или газовой фазах, не достигают пределов, губительно действующих на их живые клетки.

В результате исследований, проведенных специалистами Днепропетров¬ского университета, установлено, что белая акация, берест перистоветвистый, бузина красная, тополь канадский, шелковица и бирючина обыкновенная улавливают соединения серы, а активными поглотителями фенолов оказались белая акация, берест перистоветвистый, аморфа кустарниковая, бирючина обыкновенная. Ива, белая акация устойчивы по отношению к фтору, поэтому их используют при озеленении предприятий, связанных с алюминием.

Наиболее стойкие к газам деревья и кустарники: клен пенсильванский, древогубец плетевидный, лещина манчжурская, гледиция трехколючковая, крыжовник (все виды), плющ обыкновенный, можжевельник казацкий, луносемянник канадский и даурский, тополь крупнолистный серый, тополь канадский, гранат, айлант высочайший, акация белая, аморфа кустарниковая, берест перистоветвистый, бирючина обыкновенная, шелковица белая.

Зимой лиственные деревья лишены своих физиологически активных органов - листьев. Хвойные растения, сохраняющие зелень и зимой, в меньшей степени устойчивы против вредных промышленных выбросов.

Среднее содержание металлов в листьях растений, произрастающих на разном удалении от металлургических предприятий, мг

Вид растений Железо Марганец Цинк
всего внутренние ткани всего внутренние ткани всего внутренние ткани
0,1 км от источника
Акация белая 145,7 58,3 7,7 5,4 4,3 2,9
Вяз перистоветвистый 149,3 41,7 13,4 7,3 16,7 6,2
Тополь канадский 94,3 23,5 11,9 7,2 27,6 14,3
Ясень зеленый 54 25,7 12,3 4 2,6 2,1
Сирень обыкновенная 65,3 39 13,4 6,2 9 3,7
0,3 км от источника
Акация белая 73,3 28 5,3 4,4 2,5 2,2
Вяз перистоветвистый 76,7 23,3 4,7 3,6 3,2 3
Конский каштан 68,3 30 6,5 6 2,2 1,8
1 км от источника
Акация белая 43,3 17,7 6,3 5,5 2,3 1,8
Вяз перистоветвистый 53,4 21 5,5 4 3 2,6
Тополь канадский 55 15,1 15,2 13,2 24,3 17,2
Клен ясенелистный 70 - 9,5 - 2,1 -
3 км от источника
Акация белая 31,7 16,1 2,8 2,2 4,1 3
Вяз перистоветвистый 30 - 4,7 - 5,7 -
Тополь канадский 43,3 - 10,5 - 15,5 -
Конский каштан 28,3 19,3 3,3 2,5 0 8,5
7 км от источника
Акация белая 21 11,7 2,3 1,8 3,3 2,9
Вяз перистоветвистый 22,3 13,6 4 3,5 5,7 2,6
Тополь канадский 10,3 7 3,8 3,6 14,8 12,2

Загрязнение окружающей среды тяжелыми металлами приводит к накоплению металлов в растениях (при этом их зольность увеличивается в 1,5-2 раза).

Некоторые растения могут ограничивать поступление, регулировать аккумуляцию металлов на уровне организма, отдельных его органов, тканей клеток и регулировать передвижение из корней в стебли и листья. Определенная избирательная способность корневого поглощения позволяет растению избегать избыточной аккумуляции металлов.

Устойчивые виды древесных растений, как правило, накапливают больше металлов в корнях, чем в надземной части.

У травянистых растений в некоторых случаях защитная реакция к избыточному содержанию металлов проявляется в увеличении соотношения между корневой системой и надземной частью, а при оптимизации питания она снова выравнивается.

Ученые Центрального республиканского ботанического сада АН СССР (Г. М. Илькун, М. А. Маховская, О. Ф. Шапочка, Н. М. Бойко) исследовали поглощение тяжелых металлов древесными растениями (табл. 2.6). Для определения содержания металлов во внутренних тканях листа с поверхности листьев тщательно смывали осевшую пыль. Полученные результаты позволяют сделать вывод, что основными компонентами выбросов металлургических предприятий являются окислы железа. По мере удаления от доменного цеха аккумуляция железа понижается при 250-300 м в 1,5-2 раза, 1 км - в 3 раза, 3 км - 4-5 раз, 7-10 км в 7-9 раз.

Ленинградские ученые Т. А. Парибок, Г. Д. Леина, Н. А. Садыкина и др. пришли к выводу, что в парках жилых районов концентрация свинца в среднем в 2 раза, а в парке промышленного района в 4-8 раз выше, чем в лесопарке в 43 км от города. Концентрация свинца в уличных посадках еще выше - в 8-12 раз (в зависимости от вида растений).

Среди кустарников больше свинца накапливает древовидная карагана (желтая акация), а из листопадных деревьев - обыкновенная липа и береза.

У акации белой содержание металлов от весны к осени повышается в 3,5 раза, у вяза перистоветвистого - в 4-5 раз. Канцероген 3, 4 - бензопирен является опасным загрязнителем воздуха - он может из воздуха перейти в почву, а оттуда в растения и пищу человека.

Растения с высокой способностью расщеплять 3,4 бензопирен используют для очистки окружающей среды от канцерогенных полициклических углеводородов.

Целесообразно отбирать породы: одни - очищающие воздух от вредных газов, другие - от пыли.

Зеленые насаждения задерживают пыль и уменьшают запыленность воздуха. Эффективность пылезащитных свойств растений у разных пород не одинакова и зависит от строения дерева, его ветрозащитной способности. Лучше всего задерживают пыль деревья с шершавыми, морщинистыми, складчатыми, покрытиями волосками липкими листьями.

Шершавые листья (вяз) и листья, покрытые тончайшими ворсинками (сирень, черемуха, бузина), лучше удерживают пыль, чем гладкие (клен, ясень, бирючина).

Листья с войлочным опушением по пылезадержанию мало отличаются от листьев с морщинистой поверхностью, но они плохо очищаются дождем. Клейкие листья в начале вегетации имеют высокие пылезадерживающие свойства, но их утрачивают. У хвойных пород на единицу веса хвои оседает в 1,5 раза больше пыли, чем на единицу веса листьев, и пылезащитные свойства сохраняются круглый год. Зная пылезащитные свойства растений, варьируя размеры озеленяемой территории, подбирая породы и необходимую густоту посадок, можно добиться наибольшего пылезащитного эффекта. Дожди, освобождая насаждения и воздушный бассейн от пыли, смывают ее на поверхность земли.

В городе запыленность воздуха значительно выше, чем в пригороде. Количество пыли в воздухе изменяется в зависимости от влажности воздуха и скорости ветров.

Наблюдения канд. мед. наук В. Ф. Докучаевой показывают, что запыленность воздуха под деревьями меньше, чем на открытой площадке: в мае на 20 %, июне на 21,8 %, июле на 34,1 %, августе на 27,7 % и в сентябре на 38,7 %. За весь вегетационный период средняя концентрация пыли на открытой площадке составила 0,9 мг/м3 воздуха, а под деревьями - 0,52 мг/м3 воздуха, т. е. на 42,2 % меньше.

Запыленность воздуха под деревьями оказалась меньше, чем на открытой площадке: в декабре на 13,6 %, январе на 37,4 %, в феврале на 18 %. За весь осенне-зимний период средняя концентрация пыли в воздухе на открытой площадке составила 0,8 мг/м3 воздуха, а под деревьями - 0,5 мг/м3 воздуха, т. е. меньше на 37,5 %.

Результаты исследований, проведенных в Ростовском научно-исследовательском институте Академии коммунального хозяйства им. К. Д. Памфилова, представлены в табл. 2.7 и 2.8.

По мере удаления от источника количество пыли, как находящейся в воздухе, так и осажденной зелеными массивами, на единицу площади снижалось.

Количество пыли, осажденной листвой поверхностью деревьев различных пород

Растения Суммарная площадь листовой пластинки, м. кв. Общее количество осажденной пыли, кг
деревья
айлант 208 24
акация белая 86 4
вяз перистоветвистый 66 18
вяз шершавый 223 23
гледичия 130 18
ива 157 38
клен полевой 171 20
тополь канадский 267 34
шелковица 112 31
ясень зеленый 195 30
ясень обыкновенный 124 27
кустарники
акация желтая 3 0,2
бересклет европейский 13 0,6
бирючина обыкновенная 3 0,3
бузина красная 8 0,4
лох узколистный 23 2
сирень обыкновенная 11 1,6
спирея 6 0,4
виноград пятнистый 3 0,1

Пихтовый лес на площади 1 га в состоянии задержать 32 т пылевых частиц, буковый лес - 68 т пыли. Это связано с тем, что 1 га буковых насаждений развивает общую листовую поверхность, равную 75 га. Одно тополиное дерево высотой 9 м имеет площади ствола, сучьев и ветвей около 8 м2 и листовую поверхность 50 м2. Очень хорошим пылеуловителем является вяз. Он задерживает пыль в 6 раз интенсивнее, чем гладколистный тополь.

Растительность городских парков и скверов площадью 1 га за вегетационный период очищает от пыли 10- ,20 млн. м3 воздуха.

Химический состав пылевых частиц отличается многообразием составляющих его компонентов, часто присутствием значительного количества металлов, особенно в выбросах предприятий металлургической промышленности. Результаты исследований учитывают большую положительную роль зеленых насаждений в борьбе с запыленностью воздуха.

Количество пыли, оседающей на 1 м кв. почвы и задержанной 1 м кв. поверхности листьев (по Ишину Ю.Д.)

Расстояние от источника, м На 1 м кв. поверхности почвы, кг На 1 м кв. поверхности листьев
сосна береза осина
г % г % г %
500 - 900 7,768 3,123 40,2 1,839 23,7 1,256 16,2
1900 - 2650 7,557 - - - - - -
2650 - 3850 6,94 2,67 38,5 0,264 3,8 0,196 2,8
3850 - 4650 5,071 1,816 35,8 0,093 1,8 0,011 0,21

Не следует, конечно, забывать, что степень запыленности воздуха может быть сильно уменьшена такими мероприятиями, как максимальное улавливание пыли в точках ее выброса на промышленных предприятиях, повышение уровня благоустройства (замощение) и улучшение эксплуатационного режима улиц и площадей (полив и уборка).

Значительная роль в улучшении состояния воздуха отводится ионам. Ионы бывают легкие и тяжелые. Легкие могут нести отрицательный или положительный заряды, тяжелые - только положительный.

При благоприятных условиях развития растения повышают в воздухе и на прилегающей территории число легких отрицательно заряженных ионов - материальных носителей электрических зарядов, характеризующих состояние чистоты воздуха.

Умеренно повышенная ионизация воздуха (до 2-3 тыс. ионов на 1 см3) сказывается положительно на здоровье и самочувствии человека. Растительность влияет на ионизацию воздуха в зависимости от породного состава, полноты, возраста насаждений и некоторых других характеристик.

Наибольший эффект ионизации наблюдается под кронами следующих пород и деревьев: сосна обыкновенная, ель обыкновенная, туя западная, дуб красный, дуб черешчатый, ива плакучая, клен серебристый, клен красный, тополь черный, лиственница сибирская, пихта сибирская, береза карельская, береза японская, рябина обыкновенная, сирень обыкновенная, акация белая. Лучше ионизируют воздух смешанные насаждения.

Загрязнение атмосферы и как следствие плохое состояние растительности ведут к увеличению количества вредных для здоровья человека тяжелых ионов.

Среди множества факторов, влияющих на микрофлору воздуха, особое место отводится фитонцидам. Фитонциды - летучие и нелетучие, выделяемые растениями и защищающие их вещества, способные подавлять рост, тормозить развитие вредных болезнетворных бактерий, микроорганизмов и таким образом оздоровлять воздух.

Фитонциды дубовой листвы уничтожают возбудителя дизентерии, а фитонциды можжевельника - возбудителей брюшных заболеваний. Сосна крымская, кипарис вечнозеленый, кипарис гималайский задерживают рост туберкулезной палочки. Фитонциды черемухи, рябины, можжевельника используют для борьбы с вредными насекомыми: В сосновом бору, находящемся в хорошем состоянии и благоприятных условиях, произрастания болезнетворных бактерий в 2 раза меньше, чем в лиственном. Туя обладает способностью уменьшить загрязненность воздуха болезнетворными микроорганизмами на 67 %. Хвойные породы за сутки способны выделить летучих веществ: 1 га можжевельника - 30 кг, сосны и ели - 20 кг, лиственных пород - 2-3 кг. Однако сосновым насаждениям свойственны повышенные радиация и температура воздуха, пониженная влажность, поэтому для отдыха наиболее благоприятными будут территории смешанных хвойно-лиственных насаждений.

Большинство растений проявляет максимальную антибактериальную активность летом, когда воздух парков содержит в 200 раз меньше бактерий, чем воздух улиц. При подборе растений для озеленения городов необходимо учитывать их бактерицидные свойства. Насаждения следует размещать с наветренной стороны по отношению к месту пребывания человека.

Санитарно-гигиеническая эффективность зеленых насаждений в ряде случаев зависит от метеорологических условий.

Известно более 500 видов растений, обладающих в разной степени фитонцидными свойствами. Среди них: акация белая, багульник болотный, барбарис обыкновенный, береза карельская, граб обыкновенный, дуб черешчатый, ель обыкновенная, ива плакучая, каштан конский, кедр сибирский, клен красный, лиственница сибирская, липа мелколистная, можжевельник казацкий, осина, пихта сибирская, платан восточный, райграс пастбищный, сосна обыкновенная, софора японская, тополь серебристый, туя западная, чубушник, черемуха, эвкалипт.

Учитывая, что зеленые насаждения за счет задерживающей и поглощающей способности способствуют оздоровлению окружающей среды, при подборе ассортимента растений для озеленения в техногенных регионах необходимо отдавать предпочтение растениям, обладающим максимальной емкостью поглощения и устойчивым к выбросам данного предприятия в данных природоклиматических условиях. При этом следует иметь в виду, что широкие, плотные массивы гасят ветер, и на территории промышленных предприятий возникает ситуация, способствующая концентрации вредных газов. Чередуя вокруг точек выброса вредных газов насаждения с открытыми участками, можно значительно усилить проветривание территории в вертикальном направлении.

Насаждения и шумозащита. С развитием городов проблема борьбы с шумом приобретает все большую остроту. С физической точки зрения звук (шум) представляет собой волновое колебание упругой среды. Орган слуха человека в результате процесса эволюции приспособился воспринимать не все колебательные процессы, а лишь колебания, частота которых находится в пределах от 16 до 20 000 Гц, т. е. от 16 до 20 000 колебаний в 1 с.

Звуковые колебания вызывают повышение и понижение давления в воздушной среде. Разность между этим давлением и атмосферным называется звуковым давлением. Уровень звукового давления определяется в логарифмических единицах - децибеллах (дБ). Диапазон человеческого уха укладывается в 140 дБ. Нижней границей этого диапазона является порог слышимости, а верхней - максимальный предел громкости, не вызывающий болевого ощущения. Порог слышимости - 10 дБ, разговорная речь двух стоящих рядом людей - 50, шум на улице - 60-80, шум внутри вагона метрополитена - 90, шум реактивного самолета при взлете-130, порог болевого ощущения человека- 140 дБ.

Шум отрицательно влияет на организм человека: является причиной его частичной или полной глухоты, вызывает сердечно-сосудистые и психические заболевания, нарушает обмен веществ. Результаты проведенных исследований позволили определить критические величины звукового давления и максимально допустимое время его воздействия на человека: уровень шума 85 дБ человек может выдержать (без последствий) в течение 8 ч, 91 дБ - 4 ч, 97 дБ - 2 ч, 103 дБ-1 ч, 121 дБ-7 мин. При уровне шума 40-45 дБ нарушается сон у 10-20 % населения, при 50 дБ-у 50 %, а при 75 дБ - у 95 % населения.

Санитарно-гигиенические требования к жилой застройке, определяют необходимость защиты населения от вредного воздействия городского шума. В зависимости от интенсивности, частотных характеристик, времени и продолжительности воздействия для различных мест пребывания человека устанавливаются определенные допустимые уровни звука в дБА (палаты больниц и санаториев - 25, жилые комнаты квартир - 30, территории больниц - 35, классы школ - 40, территории жилых микрорайонов - 45, вокзалы - 60). Данные допустимые значения уровней звука относятся к ночному времени (с 23 до 7 ч), в дневное время эти уровни увеличиваются на 10 дБА.


Принципиальные схемы распространения звука в зеленых насаждениях: а - в результате многократного отражения шум затухает медленнее, чем на открытой ровной территории; б - увеличение плоскости восприятия и отражения звуковых волн от ряда опушки из кустарников увеличивает шумозащитное действие; в - двухъярусная живая изгородь увеличивает плоскость восприятия и отражения звуковых волн и обеспечивает больший шумозащитный эффект; г - схема организации наиболее эффективной щумозащиты

Шумозащитные посадки зеленых насаждений: а - пример плотных шумозащитных посадок смешанного типа; б - пример посадок на улице для защиты от транспортного шума; 1 - лиственные деревья высокорослые; 2 - хвойные деревья средней высоты и высокорослые; 3 - хвойные деревья низкорослые; 4 - кустарники высокие; 5 - кустарники низкие; 6 - лиственные деревья средней высоты

Шум города слагается из шумов различных источников и прежде всего от промышленных предприятий, транспорта, строек, работы оборудования, бытовых приборов и т. д. В городе самым распространенным и наиболее утомляющим является шум транспорта, который зависит от скорости движения и частоты остановок (с их увеличением уровень шума возрастает). При прохождении 100 автомобилей в час средний уровень шума на прилегающей к дороге территории составляет 70 дБ. Уровень шума от движения автотранспорта на улицах местного значения составляет 55- 65 дБА, на магистральных улицах - 70-85 дБА.

В целях снижения городского шума проводят специальные градостроительные мероприятия, которые дают максимальный эффект при комплексном их применении: удаляют жилые дома от проезжей части; в качестве шумозащитных экранов на магистрали размещают общественные здания, автостоянки, сооружения торгового и коммунального назначение (склады, магазины, мастерские, небольшие бесшумные предприятия); создают инженерные шумозащитные сооружения, конструкции и устройства (стены, экраны), выемки, насыпи и специальные полосы зеленых насаждений. Уменьшение шума от транспорта достигается за счет рациональной трассировки транспортных магистралей, выведения их с территории жилого района и определенного ограничения скорости движения транспорта.

Для защиты селитебных территорий от шума необходимо максимально использовать городское зеленое строительство.

Зеленые насаждения, расположенные между источником шума и жилыми домами, участками для отдыха, могут значительно снизить уровень шума. Эффект возрастает по мере приближения растений к источнику шума; вторую группу целесообразно размещать непосредственно около защищаемого объекта.

Звуковые волны, наталкиваясь на листья, хвою, ветки, стволы деревьев различной ориентации, рассеиваются, отражаются или поглощаются. Кроны лиственных деревьев поглощают около 25 % падающей на них звуковой энергии.

Номограмма определения величины снижения уровня шума полосами зеленых насаждений (автор М. М. Болховитин): 1 - полоса зеленых насаждений шириной Юм из лиственного ассортимента деревьев в трехрядной шахматной посадке с двухъярусной живой изгородью из кустарника; 2 - полоса зеленых насаждений шириной 15 м из лиственного ассортимента деревьев в четырехрядной шахматной посадке с опушечным рядом и подлеском из кустарника; 3 - полоса зеленых насаждений шириной 20 м из лиственного ассортимента деревьев в пятирядной шахматной посадке с пушечным рядом и подлеском из кустарника; 4 - полоса зеленых насаждений 25 м из лиственного ассортимента деревьев в шестирядной шахматной посадке деревьев с двухъярусной живой изгородью из кустарника; 5 - полоса зеленых насаждений шириной 15 м из хвойного ассортимента деревьев в четырехрядной шахматной посадке с двухъярусной живой изгородью из кустарника; 6 - полоса зеленых насаждений шириной 20 м из хвойного ассортимента деревьев в пятирядной шахматной посадке с двухъярусной живой изгородью из кустарника

Снижение шума растениями зависит от конструкции, возраста, плотности посадок и кроны, ассортимента деревьев и кустарников, спектрального состава шума, погодных условий и т. д.

При неправильном расположении зеленых насаждений по отношению к источникам звука за счет отражательной способности листвы можно получить противоположный эффект, т. е. усилить уровень шума. Это может произойти при посадке деревьев с плотной кроной по оси улицы в виде бульвара. В этом случае зеленые насаждения играют роль экрана, отражающего звуковые волны по направлению к жилой застройке.

Рядовые посадки деревьев с открытым подкроновым пространством шум не поглощают, так как между поверхностью земли и низом крон создается своеобразный звуковой коридор, в котором многократно отражаются и складываются звуковые волны. Отражение звука происходит прежде всего в зоне прямого контакта с поверхностью шумозащитной полосы и зависит от применяемой конструкции полосы и плотности фронтальной зоны, воспринимающей звуковой удар.

Шумозащитная эффективность различных насаждений (по данным КЕТУКИ, ВР)

Лучший эффект снижения шума достигается при многоярусной посадке деревьев с густыми кронами, смыкающимися между собой, и опушечными рядами кустарника, полностью закрывающими подкроновое пространство.

Хорошо снижают шум полосы из растений с высоким удельным весом зелени (все хвойные породы в среднем на 6-7 дБ эффективнее снижают уровень шума при тех же параметрах полос, чем лиственные, но в городских условиях их применение осложняется высокой чувствительностью к загрязнению окружающей среды).

Шумозащитные свойства зеленых насаждений подробно исследовались венгерскими специалистами (Научно-исследовательский институт по дорожному транспорту - КЕТУКИ). Измерения проводились в разновозрастных лиственных (акация 3 и 36 лет), (тополь 10 лет, дуб 19 и 75 лет), хвойных (сосна 5 и 17, ель 11 лет), смешанных (дуб, сосна, граб 17 лет) насаждениях и в зарослях кустарника.

По степени шумозащитной эффективности различные насаждения располагаются в следующем порядке: сосновые, еловые, кустарниковые (лиственные разных видов) и лиственные древесные (табл. 2.9).

Оптимальная ширина шумозащитной полосы в городских условиях находится в пределах 10-30 м. Увеличение ширины полосы не дает существенного снижения шума. Полоса шириной 10 м должна состоять из не менее трех рядов деревьев.

Деревья, посаженные в шахматном порядке (высокие деревья ближе к источнику шума) с кустарником, подлеском, снижают уровень шума на 3-4 дБ больше, чем растения в рядовой конструкции, имеющие одинаковые размеры и характеристики полос. Изучение снижения различными типами зеленых насаждений общих уровней шума от движущегося транспорта дало результаты, представленные в табл. 2.10.

Эффективность снижения уровня транспортного шума полосами зеленых насаждений различной ширины, дендрологического состава и конструкции

Ширина полосы, м Характеристика шумозащитной полосы Эффективность снижения уровня шума за полосой зеленых насаждений, дБ А, при
70 75
10 3-рядная посадка лиственных деревьев: клена остролистного, вяза обыкновенного, липы мелколистной, тополя бальзамического в рядовой конструкции посадок, с кустарником в живой изгороди или подлеском из клена татарского, спиреи калинолистной, жимолости татарской 5 6
15 4-рядная посадка лиственных деревьев: липы мелколистной, клена остролистного, тополя бальзамического в рядовой конструкции посадок, с кустарником в двухъярусной живой изгороди и подлеском из акации желтой, спиреи калинолистной, гордовины, жимолости татарской 7 7
15 4-рядная посадка хвойных деревьев: ели, лиственницы сибирской в шахматной конструкции посадок, с кустарником из двухъярусной живой изгороди из дерна белого, клена татарского, акации желтой, жимолости татарской 11 12
20 5-рядная посадка лиственных деревьев: липы мелколистной, тополя бальзамического, вяза обыкновенного, клена остролистного в шахматной конструкции посадок, с кустарником в двухъярусной живой изгороди и подлеском из спиреи калинолистной, жимолости татарской, боярышника сибирского 8 8
20 4-рядная посадка хвойных деревьев: лиственницы сибирской, ели обыкновенной в шахматной конструкции посадок, с кустарником в двухъярусной живой изгороди и подлеском из спиреи калинолистной, акации желтой, боярышника сибирского 13 14
25 5-рядная посадка лиственных деревьев: клена остролистного, вяза обыкновенного, липы мелколистной, тополя бальзамического в шахматной конструкции посадок, с кустарником в двухъярусной живой изгороди и подлеском из дерна белого, боярышника сибирского, клена татарского 9 10
30 7 - 8-рядная посадка лиственных деревьев: липы мелколистной, клена остролистного, тополя бальзамического, вяза обыкновенного в шахматной конструкции посадок с кустарником в двухъярусной живой изгороди и подлеском из клена татарского, жимолости татарской, боярышника сибирского, дерна белого 10 11
Примечание. Деревья в полосах зеленых насаждений высотой не менее 7 - 8м, кустар-ники - не менее 1,6 - 2м.

Результаты этого исследования показывают, что наибольший эффект в снижении шума дает посадка шириной 20 м, т. е. 5 рядов хвойных деревьев и 2 ряда кустарников.

Более интенсивное снижение шума по сравнению с равномерным сплошным озеленением достигается при посадке нескольких плотных полос деревьев на таком расстоянии друг от друга, чтобы их кроны не смыкались, тогда каждый ряд деревьев с плотной живой изгородью снижает шум на -2 дБА, становясь новой преградой на пути шума, экранируя его.

Создание между полосами газонов т поддержание их в хорошем состоянии позволят улучшить шумозащиту, так как они отражают звук от поверхности по сравнению с грунтом и асфальтом соответственно на 10 и 20 % меньше.

Полоса шумозащитных зеленых насаждений должна иметь оптимальную плотность, глубину и высоту (на 2 м нише условной прямой, соединяющей источник шума и расчетную точку на защищаемом участке).

Конструкции шумозащитных полос магистралей выбираются в зависимости от величины шума автотранспорта. Полоса зеленых насаждений шириной 30 м, плотностью 0,8-0,9, состоящая из 7-8 рядов лиственных деревьев (липа, тополь, клен) высотой 7-8 м с густо ветвящейся плотной кроной, низким штамбом с кустарником в подлеске (бирючина, спирея) и живой изгородью высотой 1,5-2 м, может снизить уровень транспортного шума до 12 дБ.

Расстояние от тротуара магистрали до домов должно быть не менее 15- 20 м озелененной территории. В табл. 2.11 представлены распространенные в Чехо-Словакии рекомендации по защите от шума городского транспорта.

Нормы удаленности застройки от проезжей части улицы

Наилучшим шумозащитным эффектом обладает сформированная из деревьев и кустарников зеленая полоса, расположенная на экранизирующем барьере - земляном кавальере. При расположении магистрали в выемке целесообразно озеленить верхнюю бровку откоса.

В случае направленного шума рассеивать его могут отдельно стоящие деревья и кустарники.

Среди жилой застройки, внутри микрорайона распространены высокочастотные источники шума: спортивные, игровые и детские площадки, плескательные бассейны, хозяйственные площадки и т. д. Плотные зеленые насаждения снижают уровень звука и в высокочастотном диапазоне, поэтому их применяют в комплексе со специальными стенками-экранами.

Нормами предусмотрены различные расстояния (м) от спортивных площадок до жилых домов при наличии и отсутствии зеленых насаждений:

Для снижения уровней шума внутри микрорайонов и кварталов во дворах и на узких улицах целесообразно вместе с посадкой деревьев с густой кроной, плотного высокого кустарника и созданием травянистого покрова на всех свободных участках использовать вертикальное озеленение зданий, (которое уменьшает поверхность отражения звука, увеличивая звукопоглощение стены в 6-7 раз. Растения не только улучшают акустическую ситуацию в городе, но и служат действенным средством оздоровления, городской среды, регулируя и улучшая санитарно-гигиенические и микроклиматические показатели, оказывая положительное психологическое и эстетическое воздействие.

Внешний вид и долговечность растений в шумозащитной полосе во многом определяются степенью воздействия городской среды и экологическими особенностями растений (прежде всего их дымо- и газоустойчивостью и способностью сохранить свои свойства при длительном воздействии выхлопных газов автомобилей).

На примере, приведенном на рис. 2.16, застройка расположена у шумной автомагистрали. На прилегающей к магистрали территории находятся небольшие ремесленные предприятия и учреждения, защищенные от шума магистрали земляной насыпью зелеными насаждениями. Вторая насыпь отделяет эту полосу шумозащитных объемных сооружений от основной территории. Исследования показали, что все фасады жилых зданий подвергаются шумовому воздействию менее 60 дБА, 90 % фасадов - менее 55 дБА и 34 % не подвержены воздействию от шума автомагистрали.



Буферная шумозащитная зона вдоль автомагистрали с большим потоком движения в Гренобле: 1 - автомагистраль; 2 - первый озелененный вал; 3 - здания бесшумных промышленных и складских предприятий; 4 - второй озелененный вал; 5 - коммунальные и хозяйственные учреждения; 6 - жилая застройка Организация шумозащиты жилых районов, расположенных вблизи промышленных предприятий: а - вариант размещения крупного промышленного предприятия, создающего высокий уровень шума, вблизи жилого района; б - вариант размещения новой жилой застройки вблизи крупного предприятия, создающего высокий уровень шума; 1 - промышленное предприятие; 2 - защитная зеленая зона; 3 - жилая застройка; 4 - защитная зона с нежилой застройкой; 5 - конторское учреждение; 6 - ремесленные мастерские, склады

Поскольку уровень шума в городах постоянно возрастает, то его следует учитывать при проектировании новых городов и планировочных районов, так как ограничение, а тем более снижение шума в сложившихся городских условиях - задача необычайно сложная.

Одной из наиболее действенных планировочных мер защиты от шума жилых зон является функциональное зонирование территории с выделением шумных промышленных и транспортных зон. Промежуточные территории могут использоваться для размещения сооружений, в меньшей степени подверженных шумовому воздействию, которые превращаются в буферные зоны, защищающие от воздействия шума.

На стадии генерального плана при расчетах можно принимать, что 1 пог. м зеленых массивов снижает уровень шума на 0,1 дБА. Эффективную шумозащиту от скоростных дорог и магистральных улиц непрерывного движения могут обеспечить только хорошо развитые зеленые насаждения в специально созданных в соответствии с градостроительными нормами и требованиями полосах.

Шумопоглощающая способность растений проявляется и зимой, даже в безлиственном состоянии они снижают уровень шума на 2-5 дБА. В это время года интенсивность шума несколько снижается, кроме того, площади, занимаемые озеленением, покрываются снегом, который служит пористым поглотителем шума.

Высокие экологические качества растений, приспособляемость к городским условиям, неприхотливость, цветение, аромат делают их незаменимыми при формировании полос с целью шумозащиты.

Древесно-кустарниковые породы для приобретения акустической эффективности требуют длительного времени. В связи с этим посадочный материал, предназначенный для шумозащитных полос, еще в питомниках следует формировать с широковетвистыми густыми кронами и приствольной порослью.

«Городское зеленое строительство». Горохов В.А. 1991

Роль насаждений в борьбе с загрязнением атмосферы. Одним из главных достоинств зеленых насаждений на урбанизированных территориях является их высокая активность при улавливании вредных веществ, поступающих в атмосферу за счет транспортных и промышленных выбросов. Хорошо известна роль растений в поглощении углекислого газа, уменьшении загрязненности воздуха пылью (вредные газы поглощаются растениями, а твердые частицы аэрозолей оседают на листьях, стволах и ветках растений) и уменьшении его бактериальной загрязненности путем обогащения атмосферы различными фитонцидами.

Леса, парки, сады, бульвары и скверы в значительной степени воздействуют на состав атмосферного воздуха. Во время вегетационного сезона их растительность обогащает воздух кислородом и поглощает углекислый газ. За один теплый солнечный день гектар леса поглощает из воздуха 220 – 280 кг углекислого газа и выделяет 180 – 200 кг кислорода. Наибольшей продуктивностью в процессе выделения кислорода обладает тополь. Разные породы древесно-кустарниковых растений обладают неодинаковой интенсивностью фотосинтеза и поэтому выделяют различное количество кислорода, например деревья с большей лиственной массой выделяет кислорода больше.

Насаждения очищают воздух от промышленных и выхлопных газов (эффективность борьбы полос зеленых насаждений с вредными выбросами автомобильного транспорта может варьироваться в довольно широких пределах – от 7 до 35%). Зеленые насаждения, расположенные на пути потока загрязненного воздуха, разбивают первоначальный концентрированный поток на различные направления. Таким образом, вредные выбросы разбавляются чистым воздухом, и их концентрация в воздухе уменьшается.

Газопоглотительная способность отдельных древесно-кустарниковых пород растений в зависимости от различных концентраций вредных газов в воздухе неодинакова и зависит от степени их чувствительности к различным загрязняющим веществам. Необходимо учитывать, что растения с повышенной интенсивностью фотосинтеза имеют меньшую устойчивость к газам.

Исследования и многолетние наблюдения показали, что лучшими поглотительными качествами обладают липа мелколистная, ясень, сирень обыкновенная и жимолость.

К слабоповреждаемым породам относятся вяз (шершавый и гладкий), ель колючая, ива древовидная, клен ясенелистный, осина, тополь (берлинский, бальзамический, канадский и черный), яблоня сибирская, акация желтая, боярышник сибирский, вишня дикая, калина обыкновенная, смородина черная, можжевельник (казацкий и виргинский); к среднеповреждаемым – береза бородавчатая, ель Энгельмана, лиственница сибирская, рябина обыкновенная, ива корзиночная, клен татарский и другие виды.

Из трав наибольшей устойчивостью к газам обладает овсяница луговая, наименьшей – полевица белая. Подкормка азотными удобрениями, а также известкование, улучшающее водный режим почв, заметно повышают устойчивость растений к газам.

Таблица 4. Наилучшие зеленые фильтры для биологической очистки атмосферного воздуха в городах России

1 га деревьев хвойных пород задерживает 40 т пыли/год, а лиственные – около 100 т пыли/год – результаты изучения пылезадерживающей роли древесных и кустарниковых посадок свидетельствуют о том, что на озелененный участках микрорайонов запыленность воздуха на 40% ниже, чем на открытых или застроенных площадках.

Пыль, увлекаемая нисходящими токами воздуха, оседает на листьях, но и в безлиственный период деревья уменьшают запыленность воздуха на 37%. Наибольшей пылезадерживающей способностью обладают породы деревьев и кустарников с шершавыми, покрытыми ворсинками листьями (вяз, липа, клен, сирень).

Газон наряду с деревьями и кустарниками также задерживает пыль. Не случайно в последнее время в практике озеленения все чаще отдается предпочтение ландшафтному или свободному стилю проектирования, при котором 60% и более благоустраиваемой территории отводится под газон.

Фитонциды растений и ионизация воздуха. Многие растения выделяют в воздух летучие биологически активные вещества – фитонциды, убивающие и подавляющие рост и развитие микроорганизмов. Многие из фитонцидов были выделены в чистом виде, и их химическую природу удалось установить. Оказалось, что у одних растений фитонциды – это органические кислоты, а у других – эфирные масла и алкалоиды; и в тканях различных растений фитонциды распределены неравномерно.

К фитонцидам относятся как летучие, так и нелетучие вещества растений. Все это антибиотики растительного происхождения. Летучие фитонциды способны оказывать свое действие на расстоянии; нелетучие образуются в соке тканей в момент повреждения клеточных оболочек растения, но кроме этого, фитонциды могут выделяться и неповрежденными листьями (например, фитонциды листьев дуба и березы). Количество этих веществ изменяется в зависимости от сезона, физиологического состояния растения, времени суток и почвенно-климатических условий. Больше всего их приходится на время цветения.

Изначально считали, что только растения-эфироносы обладают фитонцидными свойствами, но исследования показали, что данное явление свойственно всему растительному миру в той или иной степени. Поэтому в парках воздух содержит в 200 раз меньше болезнетворных микроорганизмов, чем на улицах города, при этом в зеленых массивах уже на расстоянии 30 метров от проезжей части улицы в 2 раза меньше микробов, чем на транспортных магистралях. Причем в чистых сосновых лесах и лесах с преобладанием сосны (до 60%) бактериальная загрязненность воздуха в 2 раза меньше, чем в березовых. Недаром многие санатории и больницы построены в сосновых борах. Фитонциды этого дерева, как правило, увеличивают защитные силы организма, тонизируют его.

Можжевельник выделяет фитонцидов примерно в 6 раз больше, чем остальные хвойные породы, и в 15 раз больше, чем лиственные. В нашей стране более 20 видов можжевельника, но это растение очень чувствительно к загрязнению воздуха промышленными отходами. Поэтому его высаживание, к сожалению, не приемлемо в крупных промышленных городах и на территориях санитарно-защитных зон.

Из 15 видов эвкалипта только лишь эвкалипт шаровидный способен уничтожить вирус гриппа. А быстрее всех уничтожают микробы и вирусы листья тополя и березы – в течение 3 часов.

Вследствие очень стремительного распространения информации о том, что фитонциды растений, проникая через легкие и кожу в организм человека, предохраняют его от инфекционных заболеваний, положительно влияют на обмен веществ, благоприятно действуют на психику, повсеместно стали выращивать на балконах ели и другие хвойные породы специальных карликовых видов, которые наполняют квартиры живительным лесным ароматом. В этом случае не стоит забывать, что большое значение имеет сочетаемость фитонцидов различных растений. Так, дуб, береза и тополь помогают друг другу: содержащиеся в этих деревьях летучие вещества попадают в один спектр. А вот растения различных спектров, например, лаванда и роза, угнетают друг друга своими фитонцидами. Новый биологический метод – экологический фитодизайн – занимается вопросами правильного совмещения растений с выраженными фитонцидными и газопоглотительными свойствами, используемых для санации и оздоровления воздушной среды помещений.

Итак, из древесно-кустарниковых пород, обладающих антибактериальными свойствами, положительно влияющими на состояние воздушной среды городов, следует назвать акацию белую, барбарис, березу бородавчатую, грушу, граб, дуб, ель, жасмин, жимолость, иву, калину, каштан, клен, лиственницу, липу, можжевельник, пихту, платан, сирень, сосну, тополь, черемуху, яблоню. Фитонцидной активностью обладают и травянистые растения – газонные травы, цветы и лианы.

Городская растительность способствует еще одному явлению, благотворному для человека, – повышению ионизации воздуха. Ионизация – процесс очищения воздуха путем обогащения его легкими отрицательно заряженными частицами или ионами.

Существуют аэроионы, которые могут нести отрицательный или положительный заряды. Наиболее благоприятное воздействие на окружающую среду оказывают отрицательные ионы (легкие). Носителями положительно заряженных (тяжелых) ионов обычно являются ионизированные молекулы дыма, водяной пыли и паров, загрязняющих воздух. Следовательно, чистота воздуха в значительной мере определяется соотношением количества легких и тяжелых ионов.

Существенной качественной особенностью кислорода, вырабатываемого зелеными насаждениями, является насыщенность его ионами, несущими отрицательный заряд, в чем и проявляется благотворное влияние растительности на состояние человеческого организма. Для более ясного представления о возможности растений обогащать воздух отрицательными легкими ионами можно привести следующие данные: число легких ионов в 1 см 3 воздуха над лесами составляет 2000 – 3000, в городском парке – 800, в промышленном районе – 200 – 400, в закрытом многолюдном помещении – 25 – 100.

На ионизацию воздуха влияет как степень озеленения, так и природный состав растений. Лучшими ионизаторами воздуха являются смешанные хвойно-лиственные насаждения. Сосновые насаждения только в зрелом возрасте оказывают благоприятное воздействие на его ионизацию, так как вследствие выделяемых молодыми сорняками паров скипидара концентрация легких ионов в атмосфере снижается. Летучие вещества цветущих растений так же способствуют повышению в воздухе концентрации легких ионов. Ионизация лесного кислорода в 2 – 3 раза выше по сравнению с морским и в 5 – 10 раз по сравнению с кислородом атмосферы городов.

В наибольшей мере способствуют повышению концентрации легких ионов в воздухе акация белая, береза карельская и японская, дуб красный и черешчатый, ива белая и плакучая, клен серебристый и красный, лиственница сибирская, пихта сибирская, рябина обыкновенная, сирень обыкновенная, тополь черный.

По данным Всемирной организации здравоохранения, смертность и длительность заболеваний обратно пропорциональны площади зеленых насаждений города. Зеленые насаждения - «легкие» городов, они способствуют улучшению микроклимата, снижают уровень шума, замечательным образом очищают загрязненный воздух от микробов, пыли.

Гектар леса в течение часа поглощает около 8 кг углекислого газа, такое количество выдыхают 200 человек. Воздухозащитный эффект зеленых насаждений зависит от их возраста, состава, состояния, характера посадки (массив, ряд), расположения по отношению к источнику загрязнения. В частности, эффективную защиту воздушной среды жилых зон от загрязнения автотранспортом обеспечивает многорядная древесно-кустарниковая полоса из газоустойчивых пород.

Учеными проведены исследования, показывающие воздействие лесов на загрязнения воздуха – до 30-40% под деревьями таких загрязнений меньше. Подсчитано, что гектар леса в течение года поглощает не менее тонны вредных газов и очистить до 18 млн. м 3 воздуха. Лесной массив способен уловить до 22% взвешенных вредных веществ, содержащихся в воздухе.

Вблизи автодорог поглощение свинца растениями с волосистыми листьями происходит примерно в десять раз быстрее, чем с гладкими, а скорость оседания свинца на траву в 4 раза больше, чем на голую почву. Подсчитано, что один гектар соснового леса может связать га год до 30 кг двуокиси серы, лиственный лес – до 72 кг, еловый – до 150 кг.

Лес очищает воздух от вредных веществ, от пыли, аэрозолей. Оказывается, один гектар хвойных лесов способен осадить до 30-35 тонн пыли в год, лиственный лес – до 70 тонн.

В промышленном городе 1 см 3 воздуха содержит от 10 до 100 тыс. мельчайших пылинок, в лесу, горах, поле - около 5 тыс. Бактерий в лесном воздухе в сотни раз меньше, чем в городском воздухе. В березовых насаждениях в кубе воздуха насчитывается до 450 штук разных бактерий, а это ниже нормы для операционных помещений, где допускается 500 неболезнетворных микроорганизмов. Еще меньше микроорганизмов в сосновом, еловом, можжевеловом лесу.

Кислородопроизводящий эффект одного дерева, произрастающего в благоприятных условиях, эквивалентен эффекту десяти комнатных кондиционеров, а количество производимого кислорода равно количеству, необходимому для дыхания 3 человек.

Составной частью атмосферного воздуха является озон. Он препятствует прохождению к поверхности земли губительной для живых организмов коротковолновой радиации. Наибольшая плотность озона на высоте 20-25 км. В приземные слои атмосферы он попадает в результате перемещения воздушных масс, средняя его плотность у поверхности земли в зависимости от времени суток, времени года - от 10 до 40 мкг/м 3 . В отношении содержания озона в лесном воздухе высказывались противоречивые мнения, исследования последних лет подтвердили его наличие, в частности, в воздухе хвойного леса. Концентрация озона в лесу изменяется в зависимости от биологической активности растений, густоты и возраста древостоя, погоды, сезона. В молодом сосняке она в 2 раза выше, чем в старом, в зимнюю пору озона в лесу минимальное количество, возможно, и нет совсем, весной - больше, всего. Чем выше температура воздуха, тем растения интенсивнее выделяют летучие вещества, более активно окисляются терпены и образуется озон. Концентрация озона в лесу повышается при грозовых разрядах, правда, это повышение кратковременное. На организм человека озон при очень малых концентрациях (менее 0,1 мг/м3) действует благотворно - улучшается обмен веществ, более глубоким и ровным становится дыхание, повышается трудоспособность.

Атмосферный воздух содержит положительные и отрицательные ионы, и те и другие подразделяются на тяжелые и легкие, для человека полезно обогащение воздуха легкими отрицательными ионами. При вдыхании такого воздуха повышается содержание кислорода в крови, очень сильно понижается уровень сахара и фосфора, снимается головная боль и усталость, улучшается самочувствие и настроение.

Лесной воздух отличается от любого другого повышенной ионизацией (подсчитали, что в кубическом сантиметре лесного воздуха содержится до 3-х тысяч легких ионов). Ионизирующими факторами являются смолистые, ароматические вещества, выделяемые растениями в период вегетации. Все они создают определенную биохимическую среду и обусловливают определенный состав приземного слоя воздуха.

Все растительные организмы (от бактерий до цветковых растений) выделяют в окружающую среду газообразные, жидкие, твердые, летучие, нелетучие, прижизненные, посмертные выделения из поврежденных и неповрежденных органов. Эти выделения являются важным экологическим и фитоценотическим фактором. Те из них, которые губительно действуют на различные болезнетворные микроорганизмы, называются фитонцидами. Особенно много фитонцидов выделяют дуб, можжевельник, сосна, ель, черемуха, мох, грецкий орех. В летний жаркий день один гектар дубового леса (дубрава) выделяет фитонцидов до 15 кг, сосновый лес - вдвое больше. Количество фитонцидов, выделяемого таким же по площади можжевеловым лесом, достаточно для уничтожения всех микроорганизмов в воздухе большого города.

Кроме сосны, ели, дуба, можжевельника и других пород, высокая фитонцидность свойственна березе, клену, осине, малине, лещине (лесному ореху), чернике. Средней фитонцидной активностью обладают ясень, ольха, рябина, сирень, жимолость, карагана.

Растение карагана

Наименьшая фитонцидная активность у вяза, бузины красной, бересклета, крушины. Она зависит от многих факторов – от породы растений, их возраста, погоды, времени суток. Воздух в молодом лесу сильнее насыщен летучими веществами, по сравнению со старым лесом Таких летучих веществ выделяется больше в жаркие дни в конце весны и в начале лета, максимум приходится на вторую половину дня, минимум - на ночное время.

Фитонциды стимулируют жизненные процессы, улучшают обмен веществ. При вдыхании воздуха, насыщенного фитонцидами сосны, у больных повышается кровяное давление, а фитонцидами дуба - оно снижается. Фитонциды ели, тополя бальзамического, лиственницы подавляют рост кишечной палочки. Фитонциды листьев лавровишни, черемухи, чернокореня, бузины травянистой токсичны для крыс. Летучие фитонциды черемухи убивают крысу в среднем за 1,5 ч. Крысы покидают те места, где лежат высушенные чернокорень или бузина травянистая. Мелкие грызуны не выдерживают запаха кануфера (пижмы бальзамической).

Под влиянием летучих веществ происходит не только озонирование воздуха и увеличение количества легких ионов в нем, изменяется радиоактивный фон.

На организм человека положительно воздействует микроклимат леса - безветрие, прохлада воздуха и почвы, умеренная солнечная радиация. При подходе к лесу скорость ветра снижается на 20-50%, в самом лесу - на 80-90%. Под кронами деревьев, в зависимости от состава, возраста, сомкнутости древостоя, а также погоды, времени суток, — сезона, влажность воздуха на 10-20% выше, чем на открытом пространстве, амплитуда колебания влажности меньше, минимальная влажность наблюдается ночью, на поверхности почвы она выше, чем в кронах деревьев, в сосновом лесу ниже, чем в лиственном. Освещенность под пологом леса может быть на 30-70% меньше, чем на открытом пространстве. Суммарная освещенность в летнюю пору в городе меньше на 3-15%, чем вблизи леса, зимой - на 20-30%. В 2 раза меньше здесь ультрафиолетовых лучей, сила ветра снижается на 20-30%. Зато осадков больше на 10%, туманных дней - вдвое, пыли - в 10 раз, окиси углерода - в 25, углекислоты - в 10, двуокиси серы - в 5 раз. Пылевой шлейф большого города может вызывать снижение солнечной радиации в радиусе 40 км.

Лес нормализует колебания температуры в разные сезоны, а также нивелирует суточные колебания температуры.

Среднегодовая температура в лесу на 1 - 3° С выше, чем на безлесном пространстве. Зимой в лесу значительно теплее, чем на открытом месте, например, на поле, лугу, летом в лесу прохладнее днем, ночью значительно теплее. Днем теплее всего в кронах, они наиболее нагреваются солнцем. В безлиственном лесу теплее у поверхности почвы, тепло здесь удерживает лесная подстилка. Лес – словно универсальный, биологический, природный кондиционер без побочного воздействия на организм человека (при правильном поведении его в лесу).

Н аши читатели не раз задавали нам вопрос: «Какое дерево больше всего выделяет кислорода?» . Можно было бы с уверенностью ответить: «Это тополь», однако не все так просто. Кислородная продуктивность зависит не только и не столько от породы дерева. Необходимо также учитывать его возраст, размеры, место произрастания, сезонную активность. Но и это еще не все… Попробуем разобраться в деталях и начнем с истории вопроса.

Опыты Пристли

Еще много веков назад ученых заинтересовала проблема улучшения качества воздуха, его очистки. Уже давно было известно, что при дыхании воздух «ухудшается». Работал в данной области и английский священник, естествоиспытатель и химик Джозеф Пристли (1733–1804). Он сделал предположение, что растения могут улучшать состав воздуха. В 1771 году Пристли проделал простой, но очень информативный опыт. Он поместил под стеклянный герметичный колпак мышь. Через некоторое время зверек начал судорожно корчиться, широко открывать рот и вскоре умер.

Джозеф Пристли

Пристли пришел к выводу о том, что чистый воздух под колпаком кончился, а выдыхаемый мышью стал не пригоден для дыхания. Во втором эксперименте он поместил вместе с мышью под колпак мяту, растущую в горшочке. В соседстве с растением мышь свободно дышала герметично закрытая колпаком. Ученый продолжил свои опыты, меняя условия: ставил колпак с мышью и растением на окно, убирал в темный шкаф… И сделал абсолютно правильный вывод о том, что растения на свету «улучшают» воздух, «испорченный» дыханием и горением. Так Джозеф Пристли стал одним из первооткрывателей кислорода, углекислого газа и фотосинтеза.

Фотосинтез

В процессе фотосинтеза происходит разложение воды на кислород, который выделяется в атмосферу, и водород, идущий на восстановление углекислого газа, следствием чего является образование органических веществ. Учеными установлено, что при фотосинтезе образуются не только углеводы, но и белки. А углекислый газ попадает в растение не только из воздуха через устьица, но и в виде углекислоты поглощается корнями из почвы.

Наблюдать процесс выделения кислорода можно на очень простом опыте, который является одним из популярных в школьном курсе биологии. Водное растение элодея (фрагмент побега) помещается в сосуд с водой. Растение накрывают воронкой, на свободный конец которой надевают пробирку и ставят рядом с источником света. Через некоторое время в клетках элодеи образуется кислород, он скапливается в межклетниках. Сквозь срез стебля газ выделяется в виде непрерывного потока пузырьков и накапливается в пробирке. Доказать, что это кислород, не представляет особого труда. Достаточно опустить в пробирку тлеющую лучину. Данный опыт интересен и тем, что доказывает прямую зависимость интенсивности выделения кислорода от степени освещения. Удаляя и приближая источник света к растению можно наблюдать изменение скорости образования пузырьков кислорода.

У теневыносливых растений пик активности фотосинтеза наблюдается в полутени.


Зависимость от света

Скорость фотосинтеза прямо пропорциональна увеличению интенсивности света.

Следует заметить, что интенсивность фотосинтеза (и выделение кислорода) различна у разных видов растений:

  • у теневыносливых растений пик активности фотосинтеза наблюдается в полутени;
  • у светолюбивых интенсивность фотосинтеза высока только при полном солнечном освещении.

У деревьев также прослеживаются периодические изменения в интенсивности фотосинтеза. Угнетение процесса фотосинтеза происходит в полуденные часы, когда устьица на листьях закрываются с целью уменьшения испарения и потери растением влаги.

Депрессия фотосинтеза наступает в ночные часы, что коррелируется внутренними факторами. Интересен и тот факт, что зеленый лист может использовать в процессе фотосинтеза только 1 % падающей на него солнечной энергии.

Зависимость от температуры

Не только свет, но и температура окружающей среды влияет на процесс образования органических веществ и выделение кислорода. Максимальная интенсивность фотосинтеза у большинства растений умеренного пояса отмечается в диапазоне от +20 до +28 °С. При повышении температуры интенсивность фотосинтеза падает, а интенсивность дыхания, наоборот, возрастает.

Опыты показали, что освещение растений постоянно в течение 24 часов не увеличивает процесс фотосинтеза.

Зависимость от углекислого газа и загрязнений

Огромное влияние на процесс фотосинтеза оказывает содержание углекислого газа в воздухе. В среднем концентрация углекислого газа невелика и составляет 0,03 % объема воздуха. Повышение концентрации всего лишь на 0,01 % способствует повышению продуктивности фотосинтеза и урожайности растения вдвое. Незначительное понижение концентрации углекислого газа, наоборот, резко снижает продуктивность процесса фотосинтеза.

Как никакой другой фактор влияет на фотосинтез уровень загрязнения воздуха. При высокой загазованности (в крупном городе около автомагистралей) интенсивность фотосинтеза падает в 10 раз.

Собственное дыхание растений

Не следует забывать, что растение, как и любой другой живой организм, круглосуточно дышит, выделяя углекислый газ и поглощая произведенный кислород. Ведь дыхание - процесс, обратный фотосинтезу. Кроме того, ночью фотосинтез останавливается, но растение продолжает дышать. Поэтому количество выделенного деревом кислорода реально получается ниже, так как часть его оно использует для дыхания.

Устойчивый лесной биоценоз сколько выделяет кислорода, столько же его и потребляет. Дополнительный кислород производит только активно растущее дерево или молодняки. Старовозрастные деревья могут, наоборот, потреблять кислорода больше.

Фотосинтез в цифрах

Ежегодно растительность Земли связывает 170 млрд т углерода, и ежегодно в растениях синтезируется около 400 млрд т органических веществ.

Наиболее высокая производительность кислорода отмечена у дуба и лиственницы (6,7 т/га), у сосны и ели (4,8-5,9 т/га). Ежегодно 1 га средневозрастного (60-летнего) соснового леса поглощает 14,4 т углекислоты и выделяет 10,9 т кислорода. За тот же период 1 га 40-летней дубравы поглощает 18 т углекислоты и выделяет 13,9 т кислорода.

Зеленые насаждения на площади 1 га поглощают за 1 ч столько углекислоты, сколько в течение этого времени выдыхают 200 человек. При образовании 1 т абсолютно сухой древесины независимо от древесной породы поглощается в среднем 1,83 т углекислоты и выделяется 1,32 т кислорода.

Для обеспечения поглощения нормы кислорода 1 человеком в год (400 кг) необходимо иметь площадь лесов на 1 человека 0,1-0,3 га. Одно крупное дерево выделяет столько кислорода, сколько нужно 1 человеку в сутки для дыхания.

Рекордсмен


Приблизительно можно считать, сколько в дереве сухого вещества по массе, столько же по массе это дерево за всю свою жизнь выделило в атмосферу кислорода.

Соответственно, чем дерево крупнее и быстрее растет – тем больше оно выделяет кислорода в атмосферу. Тополь , действительно, одно из самых быстрорастущих деревьев, потому и кислорода он выделяет больше других за время жизни. Взрослый тополь в возрасте 25–30 лет выделяет в 7 раз больше кислорода, чем такое же растение ели. Тополь также хорошо увлажняет воздух и устойчив к загрязнению воздуха.

Часть накопленного органического вещества используется в процессе дыхания самого дерева и разложения его отмерших частей.

Пылезащитные свойства

Говоря о роли деревьев в улучшении качеств воздуха, не следует забывать о пылезащитных свойствах. Нагляднее всего это продемонстрируют цифры. Шероховатые крупные листья вяза удерживают в 6 раз больше пыли, чем гладкие листья тополей. На высоте 1,5 м от земли задерживается в 8 раз больше пыли, чем на вершине кроны (на высоте около 12 м). В течение года 1 га елового леса задерживает 32 т пыли, а 1 га дубравы – 56 т.

Ионы и фитонциды

Кислород, образуемый в лесных насаждениях, насыщен ионами отрицательного заряда, в отличие от кислорода, выделяемого фитопланктоном океанов. Количество отрицательных ионов зависит от состава лесов: больше всего их образуется в лиственничных и сосновых лесах.

Деревья хорошо очищают воздух, поглощают вредные вещества. Мы пообщались с владельцами сайта http://ecology-of.ru/ и они нам немного рассказали о том, как деревья очищают воздух.

В листьях любого обычного дерева хлорофилловые зерна всегда поглощают углекислый газ, а потом выделяют кислород. Летом в естественных условиях любое дерево небольшой величины за сутки выделяет столько-то кислорода, сколько нужно будет для дыхания четырех человек. Известно то, что один гектар насаждений за один час поглощает около восьми литров углекислого газа, а потом выделяет количество кислорода в атмосферу. Это вполне достаточно для поддержания жизни тридцати человек. Деревья также приносят пользу - они очищают приземный слой воздуха, примерно толщиной приблизительно до сорока пяти метров.

Много есть пород деревьев, которые используются для озеленения городов. Все они несут пользу. Например, возьмите обычный каштан. У него есть много хорошего. Поступают выхлопные газы - каштан очищает…

Инструкция

В начале лета начинают цвести тополя. Их пух кружит по улицам, вызывая раздражение многих жителей. Тем не менее, не всегда местные власти спешат вырубать эти деревья. Тому есть уважительная причина: тополь можно назвать рекордсменом среди деревьев по очистке воздуха. Его широкие и клейкие листья успешно задерживают пыль, фильтруя воздух.

Тополь быстро растет и набирает зеленую массу, которая поглощает углекислый газ и вырабатывает путем фотосинтеза кислород. Гектар тополей вырабатывает кислорода в 40 раз больше, чем гектар хвойных деревьев. Кислорода, который выделяет одно взрослое дерево за сутки, хватит для дыхания 3 человек в течение этого времени. При этом один автомобиль за 2 часа работы сжигает столько кислорода, сколько один тополь синтезирует за 2 года. Кроме того, тополь успешно увлажняет воздух вокруг себя.

Особым достоинством тополя является его неприхотливость и жизнестойкость: он выживает вдоль автомагистралей и рядом с дымящими…

Не секрет, что экологическое состояние городов оставляет желать лучшего. Даже если в населенном пункте нет металлургических и химических предприятий, угарный газ с постоянной регулярностью отравляет окружающий воздух. Только благодаря деревьям мы получаем кислород и как следствие продолжаем жить. Крона дерева поглощая углекислый газ путем фотосинтеза, вырабатывает чистый кислород.

Скверы и парки не только украшают города, но помогают очищать воздух от отходов жизнедеятельности людей, выхлопных газов. Среднее дерево в состоянии очистить за сутки, такое количество кислорода, которым могут дышать три человека. Некоторые породы деревьев могут поглощать такое количество выхлопных газов, которое выделяется во время пробега автомобиля длиной 20 тысяч километров.

Как деревья очищают воздух в городах? Пыль, поднимаемая ветром, задерживается на кронах деревьев. 1 га лиственных пород может задержать до 100 тонн пыли, а хвойных около 40 тонн. Такими…