05.07.2023

Построение развертки конуса. Ручная развертка: виды, назначение, гост Построить развертку боковой


Развертка поверхности многогранников известна читателю из средней школы. Поэтому на этом вопросе мы останавливаемся кратко, только в плане повторения известных ранее сведений.

Под разверткой многогранной поверхности подразумевают плоскую фигуру, составленную из граней этой поверхности, совмещенных с одной плоскостью.

Существуют три способа построения развертки многогранных поверхностей:

1) способ нормального сечения;

* Геометрическое преобразование, при котором сохраняются величины углов, называется конфорным, следовательно, построение разверток является конфорным преобразованием, а поверхность и ее развертка конфорны.

** Геодезической называется линия, принадлежащая поверхности и соединяющая кратчайшим путем две точки, также принадлежащие поверхности.

2) способ раскатки;

3) способ треугольников (триангуляции).

Первые два применяются для построения развертки призматических поверхностей, третий - для пирамидальных поверхностей. Рассмотрим каждый их этих способов.

1. Способ нормального сечения.

ПРИМЕР. Построить развертку наклонной трехгранной призмы ABCDEF (рис. 292).

РЕШЕНИЕ. Пересечем призму ABCDEF плоскостью γ, перпендикулярной к боковым ребрам призмы. Построим сечение заданной призмы этой плоскостью - Δ123. Определим длины сторон Δ123. В свободном месте чертежа проведем прямую а (на рис. 292 прямая а проведена горизонтально). От произвольной точки 1 0 , взятой на этой прямой, отложим отрезки , [ 2 0 3 0 ], , конгруентные сторонам Δ123. Через точки 1 0 , 2 0 , 3 0 , 1 0 проведем прямые,

перпендикулярные к прямой а, и отложим на них от точек 1 0 , 2 0 , 3 0 , 10 0 отрезки, конгруентные соответствующим длинам боковых ребер (, [ ID], , [ 2Е], ...). Полученные точки А 0 В 0 C 0 A 0 и D 0 Е 0 F 0 D 0 соединяем прямыми. * Плоская фигура A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 представляет собой развертку боковой поверхности призмы.

Чтобы получить полную развертку призмы, необходимо к развертке боковой поверхности пристроить основания призмы - ΔА 0 В 0 С 0 и ΔD 0 E 0 F 0 , предварительно определив их неискаженные размеры.

* На рис. 292 ребра АD ВЕ и CF параллельны плоскости π 1 , поэтому они проецируются ца эту плоскость без искажения. Если ребра призмы занимают произвольное положение, то прежде чем приступить к построению развертки, следует с помощью способов преобразования перевести их в положение, параллельное какой-либо плоскости проекции.

2. Способ раскатки.

Этот способ целесообразно использовать для построения развертки поверхности призмы в том случае, когда основание призмы параллельно какой-либо одной плоскости проекции, а ее ребра параллельны другой плоскости проекции.

ПРИМЕР. Построить развертку боковой поверхности наклонной трехгранной призмы ABCDEF (рис. 293).

РЕШЕНИЕ. Примем за плоскость развертки плоскость γ, проходящую через ребро AD, параллельную фронтальной плоскости проекции. Совместим грань ADEB с плоскостью γ. Для этого мысленно разрежем боковую поверхность призмы по ребру AD, а затем осуществим поворот грани ADEB вокруг ребра AD (A"D").

Для нахождения совмещенного с плоскостью γ положения ребра В 0 Е 0 из точки В" проводим луч, перпендикулярный к A"D" и засекаем на нем дугой радиуса |А"В"| , проведенной из центра А", точку B 0 . Через B 0 проводим прямую В 0 Е 0 , параллельную (A"D").

Принимаем совмещенное положение ребра B 0 E 0 за новую ось вращения и поворачиваем вокруг нее грань BEFC до совмещения с плоскостью γ. Для этого из точки С" проводим луч, перпендикулярный к совмещенному ребру B 0 E 0 , а из точки В 0 - дугу окружности радиусом, равным |В"С"|; пересечение дуги с лучом определит положение точки С 0 . Через С 0 проводим С 0 F 0 параллельно В 0 Е 0 . Аналогично находим положение ребра А 0 D 0 . Соединив точки А"В 0 C 0 A 0 и D"E 0 F 0 D 0 прямыми, получим фигуру A"B 0 C 0 A 0 D 0 F 0 E 0 D" - развертку боковой поверхности призмы. Для получения полной развертки призмы достаточно к какому-либо из звеньев ломаной линии А"В 0 С 0 А 0 и D"E 0 F 0 D 0 пристроить треугольники основания А 0 В 0 С 0 и D 0 E 0 F 0 .

3. Способ треугольников (триангуляции).

ПРИМЕР. Построить развертку боковой поверхности пирамиды SABC (рис. 294).

Развертка боковой поверхности пирамиды представляет собой плоскую фигуру, состоящую из треугольников - граней пирамиды.

На рис. 294 определение длин ребер пирамиды выполнено с помощью вращения их вокруг оси i ∋ S и i ⊥ π 1 . Путем вращения ребра пирамиды совмещаются с плоскостью γ плоскость γ || π 2 и γ ⊃ i . После того как определены длины ребер |S"A 2 |, |S"B 2 |, |S"C 2 |, приступаем к пост-


роению развертки. Для этого через произвольную точку S 0 проводим прямую а. Откладываем на ней от точки S 0 ≅ . Из точки A 0 проводим дугу радиусом r 1 = |А"В"|, а из точки S 0 - дугу радиусом R 1 = |S"B 2 |. Пересечение

дуг укажет положение вершины В 0 ΔS 0 A 0 B 0 (ΔS 0 A 0 B 0 ≅ ΔSAB - грани пирамиды). Аналогично находятся точки С 0 и A 0 . Соединив точки A 0 В 0 С 0 A 0 , получим развертку боковой поверхности пирамиды SABC.

Вам понадобится

  • Карандаш Линейка угольник циркуль транспортир Формулы вычисления угла по длине дуги и радиусу Формулы вычисления сторон геомтрических фигур

Инструкция

На листе бумаги постройте основание нужного геометрического тела. Если вам даны паралеллепипед или , измерьте длину и ширину основания и начертите на листе бумаги прямоугольник с соответствующими параметрами. Для построения развертки а или цилиндра вам необходимо радиус окружности основания. Если она не задана в условии, измерьте и вычислите радиус.

Рассмотрите паралеллепипед. Вы увидите, что все его грани расположены под углом к основанию, но параметры этих граней разные. Измерьте высоту геометрического тела и с помощью угольника начертите два перпендикуляра к длине основания. Отложите на них высоту паралеллепипеда. Концы получившихся отрезков соедините прямой. То же самое сделайте с противоположной стороны исходного .

От точек пересечения сторон исходного прямоугольника проведите перпендикуляры и к его ширине. Отложите на этих прямых высоту паралеллепипеда и соедините полученные точки прямой. То же самое сделайте и с другой стороны.

От внешнего края любого из новых прамоугольников, длина которого совпадает с длиной основания, постройте верхнюю грань паралеллепипеда. Для этого из точек пересечеения линий длины и ширины, расположенных на внешней стороне, проведите перпендикуляры. Отложите на них ширину основания и соедините точки прямой.

Для построения развертки конуса через центр окружности основания проведите радиус через любую точку окружности и продолжите его. Измерьте расстояние от основания до вершины конуса. Отложите это расстояние от точки пересечения радиуса и окружности. Отметьте точку вершины боковой поверхности. По радиусу боковой поверхности и длине дуги, которая равняется длине окружности основания, вычислите угол развертки и отложите его от уже проведенное через вершину основания прямой. С помощью циркуля соедините найденную ранее точку пересечения радиуса и окружности с этой новой точкой. Развертка конуса готова.

Для построения развертки пирамиды измерьте высоты ее сторон. Для этого найдите середину каждой стороны основания и измерьте длину перпендикуляра, опущенного из вершины пирамиды к этой точке. Начертив на листе основание пирамиды, найдите середины сторон и проведите к этим точкам перпендикуляры. Соредините полученные точки с точками пересечения сторон пирамиды.

Развертка цилиндра представляет собой две окружности и расположенный между ними прямоугольник, длина которого равна длине окружности, а высота - высоте цилиндра.

Разверткой поверхности называется плоская фигура, образованная последовательным совмещением поверхности с плоскостью без разрывов и складок. При развертывании поверхность рассматривается как плоская, но нерастяжимая. Цель развертывания поверхностей – создание моделей поверхностей из листового материала путем последующего изгибания и «свертывания» их разверток.

Основные свойства разверток:

Прямая на поверхности переходит в прямую на развертке;

Параллельные прямые на поверхности переходят в параллельные прямые на развертке;

Длины отрезка линии на поверхности и той же линии на развертке равны;

Углы между линиями на поверхности и между соответствующими линиями на развертке равны;

Площадь развертки равна площади поверхности;

Все размеры на развертке имеют натуральную величину.

Все поверхности подразделяются на развертываемые и неразвертываемые.

К развертываемым поверхностям относятся:

Гранные поверхности (пирамиды, призмы и т.д.), т.к. плоские элементы многогранника точно совмещаются с плоскостью развертки. В этом случае развертка называется точной.

Линейчатые поверхности (цилиндрические, конические и поверхности с ребром возврата), т.е. это поверхности, у которых смежные образующие-прямые параллельны или пересекаются.

К неразвертывающимся поверхностям относятся все остальные линейчатые, а также нелинейчатые поверхности (цилиндроиды, коноиды, сфера). Развертки этих поверхностей в этом случае называются приближенными или условными.

1.5.1 Развертка поверхностей многогранников

При построении разверток многогранников определяют натуральную величину всех его граней (плоских многоугольников). При этом используют различные способы преобразования чертежа. Выбор тех или иных способов зависит от вида многогранника и его расположения относительно плоскостей проекций.

1.5.1.1 Развертка поверхности призмы

Существует два способа развертки призмы: способ «нормального сечения» и способ «раскатки».

Способ «нормального сечения» используют для развертки поверхности призм общего положения. В этом случае строится нормальное сечение призмы (т.е. вводится плоскость, расположенная перпендикулярно боковым ребрам призмы) и определяются натуральные величины сторон многоугольника этого нормального сечения.

Пример выполнения развертки трехгранной призмы общего положения способом «нормального сечения» рассмотрим в задаче согласно рисунка 1.5.1

Обратим внимание на то, что в нашем случае боковые ребра призмы являются фронталями, т.е. на плоскость П 2 они проецируются в натуральную величину.

1) Во фронтальной плоскости проекций построим фронтально проецирующую плоскость γ(γ 1 ) , которая одновременно перпендикулярна боковым ребрам призмы AD , CF , BE . Полученное нормальное сечение выразится в виде треугольника 123 . Методом плоско-параллельного перемещения определим его натуральную величину в соответствии с рисунком 1.5.2.

2) Все стороны нормального сечения последовательно отложим на прямой: 1 0 2 0 =1 1 1 2 1 1 ; 2 0 3 0 =2 1 1 3 1 1 ; 3 0 1 0 =3 1 1 1 1 1 .

3) Через точки 1 0 ,2 0 ,3 0 проведем прямые, перпендикулярные прямой 1 0 -1 0 и отложим на них натуральную величину боковых ребер: 1 0 D 0 =1 2 D 2 и 1 0 A 0 = 1 2 A 2 ; 2 0 F 0 = 2 2 F 2 и 2 0 C 0 = 2 2 C 2 ; 3 0 E 0 = 3 2 E 2 и 3 0 B 0 = 3 2 B 2 .

4) Полученные точки верхнего и нижнего оснований призмы соединим прямыми A 0 B 0 C 0 и D 0 F 0 E 0 . Плоская фигура A 0 B 0 C 0 D 0 F 0 E 0 является искомой разверткой боковой поверхности данной призмы. Для построения полной развертки необходимо к развертке боковой поверхности пристроить натуральные величины оснований. Для этого воспользуемся полученными на развертке натуральными величинами их сторон A 0 C 0 , C 0 B 0 , B 0 A 0 и D 0 F 0 , F 0 E 0 , E 0 D 0 в соответствии с рисунком 1.5.3

Рисунок 1.5.1

Рисунок 1.5.2

Рисунок 1.5.3 – Развертка призмы способом «нормального сечения»

Способ «раскатки». Этот способ удобен для построения разверток призм с основанием, лежащим в плоскости уровня. Суть способа заключается в последовательном совмещением боковых граней с плоскостью чертежа путем поворота их вокруг соответствующих ребер призмы (рисунок 1.5.4).

Этим способом построена развертка поверхности призмы ABCDEF , боковые ребра которой являются фронталями, а нижнее основание лежит в горизонтальной плоскости (рисунок 1.5.5).

1) Боковые грани призмы совместим с фронтальной плоскостью, проходящей через ребро AD . Это удобно в этом случае, т.к. фронтальные проекции боковых ребер призмы равны их истинной длине. Тогда ребро A 0 D 0 развертки будет совпадать с фронтальной проекцией ребра AD (A 2 D 2 ) .

2) Для определения на развертке истиной величины боковой грани ADEB вращаем ее вокруг ребра AD до положения, параллельного фронтальной плоскости проекций. Чтобы определить на развертке положение точки B 0 , из точки B 2 восстанавливаем перпендикуляр к A 2 D 2 . Точка B 0 будет найдена в пересечении этого перпендикуляра с дугой окружности радиуса R 1 , равного истиной величине ребра AB и проведенной из точки A 2 , как из центра.

3) Точка E 0 будет определяться на развертке как результат пересечения прямой B 0 E 0 параллельной фронтальной проекцией ребра BE (B 2 E 2 ), и перпендикуляра, восстановленного из точки E 2 к A 2 D 2 .

4) Точки C 0 и A 0 построены аналогично точке B 0 в пересечении перпендикуляров из точек C 2 и A 2 к фронтальным проекциям ребер, с дугами окружностей, проведенных из точек B 0 и C 0 как из центров радиусами R 2 и R 3 , равными соответственно ребрам BC и CA . Точки F 0 и D 0 определяются аналогично точке E 0 .

5) Соединив последовательно совмещенные вершины ломаными линиями, получим развертку боковой поверхности призмы A 0 B 0 C 0 A 0 D 0 F 0 E 0 D 0 . При необходимости можно получить полную развертку призмы, присоединив к ней натуральные величины обоих оснований.

Если боковые ребра призмы занимают общее положение, то предварительным преобразованием чертежа их надо привести в положение линий уровня.

16.1. Чертежи разверток поверхностей призм и цилиндров .

Для изготовления ограждений станков, вентиляционных труб и некоторых других изделий вырезают из листового материала их развертки.

Развертка поверхностей любой прямой призмы представляет собой плоскую фигуру, составленную из боковых граней - прямоугольников и двух оснований - многоугольников.

Например, у развертки поверхностей шестиугольной призмы (рис. 139, б) все грани - равные между собой прямоугольники шириной а и высотой h, а основания - правильные шестиугольники со стороной, равной а.

Рис. 139. Построение чертежа развертки поверхностей призмы: а - два вида; б - развертка поверхностей

Таким образом, можно построить чертеж развертки поверхностей любой призмы.

Развертка поверхностей цилиндра состоит из прямоугольника и двух кругов (рис. 140, б). Одна сторона прямоугольника равна высоте цилиндра, другая - длине окружности основания. На чертеже развертки к прямоугольнику пристраивают два круга, диаметр которых равен диаметру оснований цилиндра.

Рис. 140. Построение чертежа развертки поверхностей цилиндра: а - два вида; б - развертка поверхностей

16.2. Чертежи разверток поверхностей конуса и пирамиды .

Развертка поверхностей конуса представляет собой плоскую фигуру, состоящую из сектора - развертки боковой поверхности и круга - основания конуса (рис. 141, 6).

Рис. 141. Построение чертежа развертки поверхностей конуса: а - два вида; б - развертка поверхностей

Построения выполняются так:

  1. Проводят осевую линию и из точки s" на ней описывают радиусом, равным длине s"a" образующей конуса, дугу окружности. На ней откладывают длину окружности основания конуса.

    Точку s" соединяют с концевыми точками дуги.

  2. К полученной фигуре - сектору пристраивают круг. Диаметр этого круга равен диаметру основания конуса.

Длину окружности при построении сектора можно определить по формуле C = 3.14xD.

Угол а подсчитывают по формуле а = 360°хD/2L, где D - диаметр окружности основания, L -длина образующей конуса, ее можно подсчитать по теореме Пифагора.

Рис. 142. Построение чертежа развертки поверхностей пирамиды: а - два вида; б - развертка поверхностей

Чертеж развертки поверхностей пирамиды строят так (рис. 142, б):
Из произвольной точки О описывают дугу радиуса L, равного длине бокового ребра пирамиды. На этой дуге откладывают четыре отрезка, равные стороне основания. Крайние точки соединяют прямыми с точкой О. Затем пристраивают квадрат, равный основанию пирамиды.

Обратите внимание, как оформляют чертежи разверток. Над изображением выносят специальный знак. От линий сгиба, которые проводят штрихпунктирнои с двумя точками, проводят линии-выноски и пишут на полке «Линии сгиба».

  1. Как построить чертеж развертки поверхностей цилиндра?
  2. Какие надписи наносят на чертежах разверток поверхностей предметов?

Короткий путь http://bibt.ru

Развертки усеченного цилиндра и конуса.

Для построения развертки усеченного цилиндра вычерчивают усеченный цилиндр в двух проекциях (вид спереди и вид сверху), затем делят окружность на равное число частей, например на 12 (рис. 243). С правой стороны от первой проекции проводят прямую линию АБ, равную выпрямленной длине окружности, и делят ее на такое же количество равных частей, т. е. на 12. Из точек деления 1, 2, 3 и т. д. на линии АБ восстанавливают перпендикуляры, а из точек 1, 2, 3 и т. д., лежащих на окружности, проводят прямые, параллельные осевой до пересечения их с наклонной линией сечения.

Рис. 243. Построение развертки усеченного цилиндра

Теперь на каждом перпендикуляре откладывают циркулем вверх от линии АБ отрезки, равные по высоте отрезкам, обозначенным на проекции вида спереди номерами соответствующих точек. Для ясности два таких отрезка отмечены фигурными скобками. Полученные точки на перпендикулярах соединяют плавной кривой.

Построение развертки боковой поверхности конуса показано на рис. 244, а. Вычерчивают в натуральную величину боковую проекцию конуса по заданным размерам диаметра и высоты. Измеряют циркулем длину образующей конуса, обозначенной буквой R. Чертят циркулем с установленным радиусом дугу вокруг центра О, являющегося крайней точкой произвольно проведенной прямой ОА.

От точки А по дуге откладывают (циркулем небольшими отрезками) длину развернутой окружности, равную πD. Полученную крайнюю точку В соединяют с центром О дуги. Фигура АОВ будет разверткой боковой поверхности конуса.

Развертка боковой поверхности усеченного конуса строится, как показано на рис. 244,б. По высоте и диаметрам верхнего и нижнего оснований усеченного конуса в натуральную величину вычерчивают профиль усеченного конуса. Образующие конуса продолжают до пересечения их в точке О. Эта точка является центром, из нее проводят дуги, равные длинам окружностей основания и вершины усеченного конуса. Для этого делят основание конуса на семь частей. Каждую такую часть, т. е. 1/7 часть диаметра D, откладывают по большой дуге 22 раза и из образующейся точки В проводят прямую к центру дуги О. После соединения точки О с точками А и В получают развертку боковой поверхности усеченного конуса.